2018先进陶瓷最新研究进展及发展方向

小陶陶 2018-09-06   德化陶瓷产业创新发展研究院1639
989
0

随着现代高新技术的发展,先进陶瓷已逐步成为新材料的重要组成部分,成为许多高技术领域发展的键关材料,备受各工业发达国家的关注。由于先进陶瓷特定的精细结构和一系列优良性能,被广泛应用于国防、化工、冶金、电子、机械、航空、航天、生物医学等国民经济的多个领域。

先进陶瓷可分为2大类:结构陶瓷和功能陶瓷(详见表1)。结构陶瓷是指能作为工程结构材料使用的陶瓷,它具有高强度、高硬度、高弹性模量、耐高温、耐磨损、抗热震等特性;功能陶瓷是指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。功能陶瓷在先进陶瓷中约占70%的市场份额,其余为结构陶瓷。

由于先进陶瓷各种功能的不断发现,作为支撑材料,将在微电子工业、通讯产业、自动化控制和未来智能化技术等行业的地位日益增加,其市场容量将不断提升。

 

一、先进陶瓷制备技术发展情况

1. 陶瓷粉体的制备方法

粉体的特性对先进陶瓷后续成型和烧结有着显著的影响,特别是显著影响陶瓷的显微结构和机械性能。通常情况下,活性高、纯度高、粒径小的粉体有利于制备结构均匀、性能优良的陶瓷材料。

陶瓷粉体的制备主要包含固相反应法、液相反应法和气相反应法3大类。其中固相反应法特点是成本较低、便于批量化生产,但杂质较多,主要包括碳热还原法〔碳化硅(SiC)粉体、氧氮化铝(AlON)粉体)〕、高温固相合成法(镁铝尖晶石粉体、钛酸钡粉体等)、自蔓延合成法氮化硅〔(Si3N4)粉体等300余种〕和盐类分解法〔三氧化二铝(Al2O3)粉体〕等。其中近几年兴起的冲击波固体合成法可以大大降低反应温度,提高粉体活性。

液相反应法生产的粉料粒径小、活性高、化学组成便于控制,化学掺杂方便,能够合成复合粉体,主要包括化学沉淀法、溶胶——凝胶法、醇盐水解法、水热法、溶剂蒸发法。

气相反应法包括物理气相沉积和化学气相沉积2种。与液相反应法相比,气相反应制备的粉体纯度高、粉料分散性好、粒度均匀,但是投资较大、成本高。随着纳米技术的发展,近10年来,粉体表面积大、球形度高、粒径分布窄等特点,为高性能陶瓷提供了基础保障。

2. 先进陶瓷的成型技术

先进陶瓷成型方法种类繁多,除了传统的干压成型、注浆成型之外,根据陶瓷粉体的特性和产品的制备要求,发展出多种成型方法。总的来说可以归纳为4类:干法压制成型、塑性成型、浆料成型和固体无模成型,其中每一类成形又可细分为不同成形方法。

干法压制成型:干压成型、冷等静压成型;

塑性成型:挤压成型、注射成型、热蜡铸成型、扎膜成型;

浆料成型:注浆成型、流延成型、凝胶注模成型和原位凝固成型;

固体无模成型:熔融沉积成型、三维打印成型、分层实体成型、立体光刻成型和激光选取烧结成型。

根据先进陶瓷的发展进程,重点介绍以下成型方法:

(1)冷等静压成型

等静压成型是最常见的瘠性料先进陶瓷成型工艺,通过将粉体放入柔性模具或包套中,通过对其施加各项均匀的压力成型,是目前国内应用最为广泛、最为成熟的工艺,分为干袋式等静压和湿袋式等静压。其特点是成本低、模具简单,生坯强度高,但尺寸不精确、复杂形状成型较困难,湿袋式自动化生产效率低。

(2)流延成型

1945年,美国麻省理工学院首先对流延成型进行了报道。其原理是粘度适合、分散性良好的料浆通过流延机浆料槽道口流到基带上,通过基带和刮刀的相对运动使料浆铺展,在表面张力作用下形成有光滑表面的坯体。坯体具有良好的韧性和强度,可以制备几个微米到1mm厚的陶瓷薄片材料,目前已经广泛应用到电容器瓷片、Al2O3基片和压电陶瓷膜片中。此外,可利用流延法制备Si3N4、SiC、氮化硼(BN)等叠层复合材料,从而制备出高韧性先进陶瓷。

(3)注射成型

注射成型是将高分子聚合物注射成型方法与陶瓷制备工艺相结合发展起来的一种制备陶瓷零部件的新工艺。近几年在国内发展势头迅猛,在小尺寸、高精度、复杂形状陶瓷的大批量生产方面最具优势。发动机转子叶片、滑动轴承、陶瓷轴承球、光线连接器用陶瓷插芯、陶瓷牙、陶瓷手表等近几年均实现批量化生产。注射成型方法将是小尺寸陶瓷部件特别是复杂形状陶瓷部件最具发展前景的成型方法。


(4)凝胶注模成型

凝胶注模成型,即注凝成型是借助料浆中有机单体聚合交联将陶瓷料浆固化成型,可制备出大尺寸薄壁陶瓷或形状复杂的产品。其特点是近净尺寸成型、有机物含量少,坯体强度高可进行机械加工,适合大规模批量化生产

目前国内注凝成型应用最成熟的产品为大尺寸熔融石英坩埚、薄片Al2O3基片、二氧化锆(ZrO2)陶瓷微珠等产品。我国的熔融石英坩埚尺寸达1200×1200×540(mm),是全球唯一采用注凝工艺生产石英坩埚的国家,其使用性能达到国际先进水平。

      (5)固体无模成型

      陶瓷无模成型是直接利用CAD设计结果,通过计算形成可执行的像素单元文件,然后通过类似计算机打印输出设备将要成型的陶瓷粉体快速形成实际像素单元(尺寸可小至微米级),一个一个单元叠加的结果即可直接成型所需要的三维立体构件。美国Rutgers大学和Argonne实验室利用熔融沉积成型技术制备了Al2O3喷嘴座,烧结密度98%,强度824±110MPa;麻省理工学院利用3D打印成型技术研制的四方氧化锆陶瓷强度670MPa,断裂韧性4MPa·m1/2,并制造出热气体陶瓷过滤器;英国布鲁诺大学利用10%体积含量的ZrO2墨水采用喷墨打印机成型制备出相关陶瓷样品。

      虽然目前固体无模成型设备昂贵、技术封闭、材料性能不理想,但其与现代智能技术结合将进一步提高陶瓷制备工业的水平,是成型技术发展的主要方向。


      3. 先进陶瓷的烧结技术

      陶瓷坯体通过烧结促使晶粒迁移、尺寸长大、坯体收缩、气孔排出形成陶瓷材料,根据烧结过程中不同的状态,分为固态烧结和液相烧结。先进陶瓷的烧结技术按照烧结压力分主要有常压烧结、无压烧结、真空烧结以及热压烧结、热等静压烧结、气氛烧结等各种压力烧结。近些年通过特殊的加热原理出现微波烧结、放电等离子烧结、自蔓延烧结等新型烧结技术。

      (1)热压烧结(HP)

      对共价键难烧材料如Si3N4、BN、二硼化锆(ZrB2)需要在加热过程中给予外加机械力,使其达到致密化,此种烧结方式为热压烧结,分为单向加压和双向加压。热压烧结的特点是可以低于常压烧结温度100~200℃的条件下接近理论密度,同时提高制品的性能如透明性、电导率及可靠性。热压烧结目前在国内AlON、YAG等透明陶瓷、BN可切削陶瓷达到或接近国际水平。

      但是热压烧结通常只能制造形状单一产品,并且会加大后期的加工成本,因此该烧结方式制造成本较高。

      (2)气压烧结(GPS)

      气压烧结是指在陶瓷高温烧结过程中施加一定的气体压力,范围在1~10MPa以便抑制高温下陶瓷材料的分解和失重,从而可以提高烧结温度,促进材料的致密化,是先进陶瓷最重要的烧结技术之一。

      该技术最早由日本的Mitomo报道,其最大优势在于可以较低成本制备性能优良、形状复杂的共价键陶瓷,并可以实现批量化生产。近30年来气压烧结在日本、美国、德国和中国得到了广泛而深入的研究,烧结材料的范围不断扩大与推广,国内在大尺寸气压烧结氮化硅陶瓷方面突破了国外技术封锁,实现技术国产化。

     (3)放电等离子烧结

      放电等离子体烧结是利用等离子体所特有的高温快速烧成特点的一种新型材料制备工艺方法,被誉为陶瓷烧结技术发展的一次突破,广泛用于磁性材料、梯度功能材料、纳米陶瓷、透明陶瓷、纤维增强陶瓷和金属间化合物等系列新型材料。其优点是:烧结温度低(比HP和HIP低200~300℃),烧结时间短(只需3~10min),晶粒细小,致密度高,是近净尺寸烧结技术。此外,装置相对较简单,能量利用率高,运行费用低,易实现烧结工艺的一体化和自动化。


      (4)微波烧结技术

      微波烧结是微波电磁场与材料介质相互作用导致介电损耗而使材料表面和内部同时受热。其优点是:升温速率快,可实现快速烧结和晶粒细化;陶瓷产品整体均匀加热,内部温度场均匀;利用微波对材料的选择性加热,可以对材料某些部位进行加热修复或缺陷愈合;微波加热高效节能,节能效率可达50%左右;无热惯性,便于实现烧结的瞬时升、降温自动控制。美国橡树岭国家实验室Kinrey等人利用微波烧结1200℃制备了相对密度98.5%的Al2O3/ZrO2陶瓷材料;徐耕夫等借助微波烧结在1650℃制备了相对密度97.5%的β-SiAlON陶瓷。

      4. 陶瓷精密加工技术

      先进陶瓷属于脆性材料,硬度高、脆性大。由于陶瓷加工性能差,加工难度大,稍有不慎就可能产生裂纹或者破坏,因此不断开发高效率、高质量、低成本的陶瓷材料精密加工技术已经成为国内外陶瓷领域的热点。传统的陶瓷加工技术主要体现在机械加工,包括陶瓷磨削、研磨和抛光。近20年来,电火花加工、超声波加工、激光加工和化学加工等加工技术逐步在陶瓷加工中应用。

      二、发展与展望

      在近20年,不论是六、七十年前发明的流延成型技术、常压烧结,还是一、二十年刚刚兴起的注凝成型技术、放电等离子烧结技术,为了满足应用和研究的需要,都进行了大跨步的技术升级,相关的理论研究也取得长足的进展。国内的先进陶瓷体系不断拓展,制备技术不断丰富与进步,应用领域也从单一的军事、航空航天推广到环保、新能源、电子信息等更为广泛的民用市场,陶瓷材料也从结构陶瓷、功能陶瓷向结构——功能一体化发展。针对目前国内先进陶瓷现状,笔者认为仍需从几个方面进行重点研究开发:

      (1)陶瓷技术的基础理论研究和结构设计需要匹配应用领域对先进陶瓷的发展要求,能够对新体系、新产品、新应用和批量化转化提供技术保障;

      (2)陶瓷粉体技术的研究与产业化,要打破高端粉体仍受国外制约的现状,满足陶瓷材料发展的基本需要;

      (3)增韧技术的研究是突破先进陶瓷应用局限性的关键之一,强韧化技术将实现先进陶瓷应用翻天覆地的变化;

      (4)降低先进陶瓷生产成本是突破先进陶瓷应用局限性的另一个关键因素,特别是大批量化生产制备技术、生产装备的精密制造技术、陶瓷精密加工技术的发展将决定成本降低的能力;

      (5)注射成型、注凝成型和固体无模成型技术将成为最具批量化应用潜力的成型技术,微波烧结、放电等离子烧结技术将会给陶瓷材料性能带来质的飞跃;

      (6)结合“十三五”规划的要求和工业发展的要求,能源转化载体的储能陶瓷、在环境保护中作用突出的过滤陶瓷(膜)等功能——结构一体化陶瓷、以Si3N4为代表综合性能优良的结构陶瓷、以AlON透明陶瓷为代表的光电陶瓷将成为应用、研究的主力。

      我国从事先进陶瓷研究的单位有300多家,技术积累日益丰厚,以中材高新材料股份有限公司、中科院上海硅酸盐研究所、清华大学等为代表的单位在新体系研究设计、产业化转化方面对我国先进陶瓷发展发挥了重要推动作用。当今先进陶瓷材料的发展不再局限于传统技术,而更多的是与现代信息、自动化技术、不同材料的结合而形成新的技术科学(计算材料科学、功能——结构一体化等),先进陶瓷发展的新时代即将到来。










责任编辑:苏晓薇

本文系本网编辑转载,转载目的在于传递更多的陶瓷信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本网联系,我们将在第一时间做出处理!
评论(0)

首页关于我们寻求报道

陶瓷头条 版权所有Copyright©2019 taocitoutiao.com
首页 头条 视频 品牌
取消

历史搜索清除记录

热门搜索